需要和光纤放大器配合使用的。
大量现货供应,量大价优
90年代初期,掺饵光纤放大器(EDFA)的研制成功,打破了光纤通信传输距离受光纤损耗的限制,使全光通信距离延长至几千公里,给光纤通信带来了革命性的变化,被誉为光通信发展的一个“里程碑”。那么,究竟什么是光纤放大器呢? 根据放大机制不同,OFA可分为两大类。
掺稀土OFA制作光纤时,采用特殊工艺,在光纤芯层沉积中掺入极小浓度的稀土元素,如铒、镨或铷等离子,可制作出相应的掺铒、掺镨或掺铷光纤。光纤中掺杂离子在受到泵浦光激励后跃迁到亚稳定的高激发态,在信号光诱导下,产生受激辐射,形成对信号光的相干放大。这种OFA实质上是一种特殊的激光器,它的工作腔是一段掺稀土粒子光纤,泵浦光源一般采用半导体激光器。 当前光纤通信系统工作在两个低损耗窗口:1.55μm波段和1.31μm波段。选择不同的掺杂元素,可使放大器工作在不同窗口。 (1)掺铒光纤放大器(EDFA) EDFA工作在1.55μm窗口,该窗口光纤损耗系数1.31μm窗低(仅0.2dB/km)。已商用的EDFA噪声低,增益曲线好,放大器带宽大,与波分复用(WDM)系统兼容,泵浦效率高,工作性能稳定,技术成熟,在现代长途高速光通信系统中备受青睐。目前,“掺铒光纤放大器(EDFA)+密集波分复用(DWDM)+非零色散光纤(NZDF)+光子集成(PIC)”正成为国际上长途高速光纤通信线路的主要技术方向。 (2)掺镨光纤放大器(PDFA) PDFA工作在1.31μm波段,已敷设的光纤90%都工作在这一窗口。PDFA对现有光通信线路的升级和扩容有重要的意义。目前已经研制出低噪声、高增益的PDFA,但是它的泵浦效率不高,工作性能不稳定,增益对温度敏感,离实用还有一段距离。
非线性OFA非线性OFA是利用光纤的非线性效应实现对信号光放大的一种激光放大器。当光纤中光功率密度达到一定阈值时,将产生受激拉曼散射(SRS)或受激布里渊散射(SBS),形成对信号光的相干放大。非线性OFA可相应分为拉曼光纤放大器(SRA)和布里渊光纤放大器(BRA)。目前研制出的SRA尚未商用化。 OFA的研制始于80年代,并在90年代初取得重大突破。在现代光通信系统设计中,如何有效地提高光信号传输距离,减少中继站数目,降低系统成本,一直是人们不断探索的目标。OFA是解决这一问题的关键器件,它的研制和改进在全球范围内仍方兴未艾。 随着密集波分复用(DWDM)技术、光纤放大技术,包括掺铒光纤放大器(EDFA)、分布喇曼光纤放大器(DRFA)、半导体放大器(SOA)和光时分复用(OTDM)技术的发展和广泛应用,光纤通信技术不断向着更高速率、更大容量的通信系统发展,而先进的光纤制造技术既能保持稳定、可靠的传输以及足够的富余度,又能满足光通信对大宽带的需求,并减少非线性损伤90年代初期,掺饵光纤放大器(EDFA)的研制成功,打破了光纤通信传输距离受光纤损耗的限制,使全光通信距离延长至几千公里,给光纤通信带来了革命性的变化,被誉为光通信发展的一个“里程碑”。那么,究竟什么是光纤放大器呢? 根据放大机制不同,OFA可分为两大类。
掺稀土OFA
制作光纤时,采用特殊工艺,在光纤芯层沉积中掺入极小浓度的稀土元素,如铒、镨或铷等离子,可制作出相应的掺铒、掺镨或掺铷光纤。光纤中掺杂离子在受到泵浦光激励后跃迁到亚稳定的高激发态,在信号光诱导下,产生受激辐射,形成对信号光的相干放大。这种OFA实质上是一种特殊的激光器,它的工作腔是一段掺稀土粒子光纤,泵浦光源一般采用半导体激光器。
当前光纤通信系统工作在两个低损耗窗口:1.55μm波段和1.31μm波段。选择不同的掺杂元素,可使放大器工作在不同窗口。
(1)掺铒光纤放大器(EDFA)
EDFA工作在1.55μm窗口,该窗口光纤损耗系数1.31μm窗低(仅0.2dB/km)。已商用的EDFA噪声低,增益曲线好,放大器带宽大,与波分复用(WDM)系统兼容,泵浦效率高,工作性能稳定,技术成熟,在现代长途高速光通信系统中备受青睐。目前,“掺铒光纤放大器(EDFA)+密集波分复用(DWDM)+非零色散光纤(NZDF)+光子集成(PIC)”正成为国际上长途高速光纤通信线路的主要技术方向。
(2)掺镨光纤放大器(PDFA)
PDFA工作在1.31μm波段,已敷设的光纤90%都工作在这一窗口。PDFA对现有光通信线路的升级和扩容有重要的意义。目前已经研制出低噪声、高增益的PDFA,但是它的泵浦效率不高,工作性能不稳定,增益对温度敏感,离实用还有一段距离。
非线性OFA
非线性OFA是利用光纤的非线性效应实现对信号光放大的一种激光放大器。当光纤中光功率密度达到一定阈值时,将产生受激拉曼散射(SRS)或受激布里渊散射(SBS),形成对信号光的相干放大。非线性OFA可相应分为拉曼光纤放大器(SRA)和布里渊光纤放大器(BRA)。目前研制出的SRA尚未商用化。
OFA的研制始于80年代,并在90年代初取得重大突破。在现代光通信系统设计中,如何有效地提高光信号传输距离,减少中继站数目,降低系统成本,一直是人们不断探索的目标。OFA是解决这一问题的关键器件,它的研制和改进在全球范围内仍方兴未艾。
随着密集波分复用(DWDM)技术、光纤放大技术,包括掺铒光纤放大器(EDFA)、分布喇曼光纤放大器(DRFA)、半导体放大器(SOA)和光时分复用(OTDM)技术的发展和广泛应用,光纤通信技术不断向着更高速率、更大容量的通信系统发展,而先进的光纤制造技术既能保持稳定、可靠的传输以及足够的富余度,又能满足光通信对大宽带的需求,并减少非线性损伤